""" FEniCS tutorial demo program: Incompressible Navier-Stokes equations for channel flow (Poisseuille) on the unit square using the Incremental Pressure Correction Scheme (IPCS). u' + u . nabla(u)) - div(sigma(u, p)) = f div(u) = 0 """ from __future__ import print_function from fenics import * import numpy as np T = 10.0 # final time num_steps = 500 # number of time steps dt = T / num_steps # time step size mu = 1 # kinematic viscosity rho = 1 # density # Create mesh and define function spaces mesh = UnitSquareMesh(16, 16) V = VectorFunctionSpace(mesh, 'P', 2) Q = FunctionSpace(mesh, 'P', 1) # Define boundaries inflow = 'near(x[0], 0)' outflow = 'near(x[0], 1)' walls = 'near(x[1], 0) || near(x[1], 1)' # Define boundary conditions bcu_noslip = DirichletBC(V, Constant((0, 0)), walls) bcp_inflow = DirichletBC(Q, Constant(8), inflow) bcp_outflow = DirichletBC(Q, Constant(0), outflow) bcu = [bcu_noslip] bcp = [bcp_inflow, bcp_outflow] # Define trial and test functions u = TrialFunction(V) v = TestFunction(V) p = TrialFunction(Q) q = TestFunction(Q) # Define functions for solutions at previous and current time steps u_n = Function(V) u_ = Function(V) p_n = Function(Q) p_ = Function(Q) # Define expressions used in variational forms U = 0.5*(u_n + u) n = FacetNormal(mesh) f = Constant((0, 0)) k = Constant(dt) mu = Constant(mu) rho = Constant(rho) # Define strain-rate tensor def epsilon(u): return sym(nabla_grad(u)) # Define stress tensor def sigma(u, p): return 2*mu*epsilon(u) - p*Identity(len(u)) # Define variational problem for step 1 F1 = rho*dot((u - u_n) / k, v)*dx + \ rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \ + inner(sigma(U, p_n), epsilon(v))*dx \ + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \ - dot(f, v)*dx a1 = lhs(F1) L1 = rhs(F1) # Define variational problem for step 2 a2 = dot(nabla_grad(p), nabla_grad(q))*dx L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx # Define variational problem for step 3 a3 = dot(u, v)*dx L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx # Assemble matrices A1 = assemble(a1) A2 = assemble(a2) A3 = assemble(a3) # Apply boundary conditions to matrices [bc.apply(A1) for bc in bcu] [bc.apply(A2) for bc in bcp] # Time-stepping t = 0 for n in range(num_steps): # Update current time t += dt # Step 1: Tentative velocity step b1 = assemble(L1) [bc.apply(b1) for bc in bcu] solve(A1, u_.vector(), b1) # Step 2: Pressure correction step b2 = assemble(L2) [bc.apply(b2) for bc in bcp] solve(A2, p_.vector(), b2) # Step 3: Velocity correction step b3 = assemble(L3) solve(A3, u_.vector(), b3) # Plot solution plot(u_) # Compute error u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2) u_e = interpolate(u_e, V) error = np.abs(u_e.vector().array() - u_.vector().array()).max() print('t = %.2f: error = %.3g' % (t, error)) print('max u:', u_.vector().array().max()) # Update previous solution u_n.assign(u_) p_n.assign(p_) # Hold plot interactive()